Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fifth Semester B.E. Degree Examination, Dec.2014/Jan.2015 Formal Languages and Automata Theory

Time: 3 hrs. Max. Marks: 100

> Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- Define the following with proper examples:
 - ंग) Powers of an alphabet. i) Alphabet

(03 Marks)

- Design the DFA's for the following languages:
 - Set of all strings with at least one 'a' and exactly two 'b's on $\Sigma = \{a, b\}$.
 - Set of all strings such that number of 1's is even and the number of 0's is a multiple of ii) 3 on $\Sigma = \{0, 1\}.$ (08 Marks)
- c. Design an NFA with no more than 5 states for the following language:

$$L = \{abab^n \mid n \ge 0\} U \{aba^n \mid n \ge 0\}$$

(03 Marks)

- d. Prove that if $D = (Q_D, \sum, \delta_{D_L}, q_0)$, F_D is the DFA constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction, then L(D) = L(N). (06 Marks)
- Convert the following \in NFA into an equivalent DFA: 2

(05 Marks)

-	4 %		- 20	5 6	
	δ	€	a	Ъ	С
	→ p	{q, r}	ф	{q}	{r}
	*q	ф	{ p }	{r}	{ p , q}
	r	ф	ф	ф	d 📜

- Define regular expression and also write the regular expressions for the following languages:
 - $L = \{w \in \{a, b\} * \mid w \text{ has exactly one pair of consecutive a's} \}$
 - Set of all strings not ending in substring 'ab' over $\Sigma = \{a, b\}$. (06 Marks)
- c. Prove that if L = L(A) for some DFA A, then there is a regular expression R such that (06 Marks)
- d. Obtain the regular expression for the following DFA using state elimination technique:

(03 Marks)

State and prove pumping lemma for regular languages. 3

(07 Marks)

Let $\Sigma = \{a, b\}$. Show that the language $L = \{w \in \Sigma^* | n_a(w) < n_b(w)\}$ is not regular.

(05 Marks)

c. Consider the DFA given by the transition table:

δ	a	b
$\rightarrow q_0$	q_1	\mathbf{q}_2
q_1	q_1	\mathbf{q}_3
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_2
\mathbf{q}_3	\mathbf{q}_1	q ₄
*q4	q_1	q_2

- i) Draw the table of distinguishabilities for this automaton.
- ii) Construct the minimum state equivalent DFA.
- iii) Write the language accepted by the DFA.

(08 Marks)

- 4 a. Define a Context-Free Grammar (CFG) and also obtain the CFG's for the following languages:
 - i) $L_1 = \{a^n w w^R b^n | w \in \{0,1\}^* \text{ and } n \ge 2\}$
 - ii) $L_2 = \left\{ \hat{\mathbf{a}} \cdot \hat{\mathbf{b}}^m \mathbf{c}^n \middle| \mathbf{m} + \mathbf{n} = \mathbf{k} \text{ and } \mathbf{m}, \mathbf{n} \ge 1 \right\}$
 - iii) $L_3 = \{ w \in \{a\} \mid |w| \mod 3 \neq |w| \mod 2 \}.$

(10 Marks)

b. Consider the CFG with productions

$$E \rightarrow E * T \mid T$$

$$T \rightarrow F - T ! F$$

$$F \rightarrow (E) \mid 0 \mid 1$$

Write the leftmost derivation, rightmost derivation and parse tree for the string $(0-((1*0)-0))^2$. (06 Marks)

c. Show that the following grammar is ambiguous:

$$S \rightarrow SbS$$

$$S \rightarrow a$$
.

(04 Marks)

PART - B

- 5 a. Design a PDA for the following language: $L = \{ww^B | w \in \{a,b\} + \}$. Also, draw the transition diagram for the constructed PDA. Write the instantaneous description (ID) for the string 'abbaba'.
 - b. Convert the following CFG to a PDA that accepts the same language by empty stack:

$$E \rightarrow E + E \mid E * E \mid (E) \mid I$$

$$I \rightarrow Ia | Ib | I0 | I1 | a | b$$

(05 Marks)

- c. Define a deterministic PDA (DPDA). Also, design a DPDA along with transition diagram for the following language: $L = \{a^n b^{2n} | n \ge 0\}$. (07 Marks)
- 6 a. Begin with the grammar

$$S \rightarrow aAa |bBb| \in$$

$$A \rightarrow C \mid a$$

$$B \rightarrow C|b$$

$$C \rightarrow CDE | \in$$

$$D \rightarrow A |B| ab$$

- i) Eliminate ∈-productions.
- ii) Eliminate any unit productions in the resulting grammar.
- iii) Eliminate any useless symbols in the resulting grammar.

(08 Marks)

b. Define Chomsky Normal Form (CNF). Also, convert the following CFG to CNF:

 $S \rightarrow AB \mid a$

 $A \rightarrow aab$

 $B \rightarrow Ac$.

(06 Marks)

Show that the language $L = \{x \in \{0, 1\}^* | |x| \text{ is a perfect square } \}$ is not context-free.

(06 Marks)

- 7 a. Define a Turing machine. Also, design a Turing machine to accept the set of all palindromes over {0, 1}*. Write the transition diagram for the constructed Turing machine and write the sequence of ID's for the input string '1001'. (12 Marks)
 - b. Explain multitape Turing machine and non-deterministic Turing machines with neat block diagrams. (08 Marks)
- 8 Write short notes on the following topics:
 - a. Applications of finite automata in text search.
 - b. Inherent ambiguity of context-free languages.
 - c. Post's correspondence problem.
 - d. Recursive language and it's relationship with RE and non-RE languages.

(20 Marks)

